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1 Overview

This vignette provides basic information about the `spls' package. SPLS stands for �Sparse Partial
Least Squares�. The SPLS regression methodology is developed in [1]. The main principle of
this methodology is to impose sparsity within the context of partial least squares and thereby
carry out dimension reduction and variable selection simultaneously. SPLS regression exhibits good
performance even when (1) the sample size is much smaller than the total number of variables; and
(2) the covariates are highly correlated. One additional advantage of SPLS regression is its ability
to handle both univariate and multivariate responses.

The package can be loaded with the command:

R> library("spls")

2 Input Data

The package requires that the response is given in the form of a either vector or matrix, and the
predictors in the form of a matrix. The response can be either univariate or multivariate. The
responses and the predictors are assumed to be numerical and should not contain missing values.
As part of pre-processing, the predictors are centered and scaled and the responses are centered
automatically as default by the package `spls'.

We provide the Yeast Cell Cycle dataset as an example application for the `spls' package. The
responses are the cell cycle gene expression data of 542 genes [5] from an α factor based experiment.
In this experiment, mRNA levels were measured at every 7 minute during 119 minutes. Hence, the
response has a total of 18 measurements covering two cell cycle periods. These 18 measurements
correspond to 18 columns of the response matrix in the dataset. The predictors are chromatin
immunoprecipitation on chip (ChIP-chip) data of [4] and they contain the binding information for
106 transcription factors (TF). This application is concerned with identifying cell cycle related TFs,
i.e., TFs whose binding events contribute to explaining the variability in gene expression, as well as
inferring their activities. See [1] for more details.

The yeast cell cycle dataset with the `y' matrix as the cell cycle gene expression (responses) and
the `x' matrix as the ChIP-chip data (predictors) can be loaded as follows:

R> data(yeast)

R> yeast$x[1:5,1:5]
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ABF1_YPD ACE2_YPD ADR1_YPD ARG80_YPD ARG81_YPD

21 -0.2722730 0.21932294 0.9238359567 -0.4755756 -0.10389318

41 0.1691280 0.53831198 0.0097604993 -0.3219534 -0.19750606

71 -0.1388962 0.02636382 0.0877516229 -0.2234093 0.10307741

78 -0.2865169 -0.31409427 -0.0454998435 0.3262217 0.27757502

102 -0.4950561 -0.14827419 0.0002987512 -0.2179458 -0.02539585

R> yeast$y[1:5,1:5]

alpha0 alpha7 alpha14 alpha21 alpha28

1 -0.36 -0.42 0.29 -0.14 -0.19

2 1.04 0.19 0.47 -1.03 -0.63

5 -0.30 -0.45 0.75 0.37 0.27

8 -0.46 0.12 -0.06 -0.76 -0.70

9 -1.35 -0.86 -0.22 -0.38 -0.65

3 Tuning Parameters

SPLS regression has two main tuning parameters: `eta' represents the sparsity tuning parameter
and `K' is the number of hidden (latent) components. Parameters can be chosen by (v-fold) cross-
validation using the function `cv.spls'. The user speci�es the range for these parameters and the
cross-validation procedure searches within these ranges. `eta' should have a value between 0 and
1. `K' is integer valued and can range between 1 and min {p, (v − 1)n/v}, where p is the number
of predictors and n is the sample size. For example, if 10-fold cross-validation is used (default), `K'
should be smaller than min {p, 0.9n}. For the yeast data, we search for `K' between 5 and 10 and
for `eta' between 0.1 and 0.9 with the following command:

R> set.seed(1)

R> cv <- cv.spls( yeast$x, yeast$y, eta = seq(0.1,0.9,0.1), K = c(5:10) )

`cv.spls' returns a heatmap-type plot of mean squared prediction error (MSPE) and the optimal
values for `eta' and `K'. MSPE plot is given in Figure 1 and `cv.spls' recommends to use `eta=0.7'
and `K=8'.

4 SPLS Fit

Using the parameters obtained from `cv.spls', SPLS can be �tted by the function `spls'. `spls'
also prints out the variables that join the set of selected variables at each iteration step of SPLS �t.
`print.spls' displays the parameters used, the number of selected predictors, and the list of the
selected predictors. `coef.spls' prints out the coe�cient estimates of SPLS �ts.

R> f <- spls( yeast$x, yeast$y, eta = cv$eta.opt, K = cv$K.opt )

R> print(f)

Sparse Partial Least Squares for multivariate responses

----

Parameters: eta = 0.6, K = 8, kappa = 0.5

PLS algorithm:
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Figure 1: MSPE plot of SPLS when eta = 0.1�0.9 and K = 5�10.

pls2 for variable selection, simpls for model fitting

SPLS chose 56 variables among 106 variables

Selected variables:

ACE2_YPD ARG80_YPD ARG81_YPD ASH1_YPD AZF1_YPD

BAS1_YPD CBF1_YPD CHA4_YPD CRZ1_YPD FHL1_YPD

FKH1_YPD FKH2_YPD FZF1_YPD GAT1_YPD GAT3_YPD

GCN4_YPD GCR2_YPD GLN3_YPD HAA1_YPD HAP2_YPD

HAP5_YPD HIR1_YPD HIR2_YPD IME4_YPD INO4_YPD

A1..MATA1._YPD MBP1_YPD MCM1_YPD MET4_YPD MSN2_YPD

NDD1_YPD NRG1_YPD PHD1_YPD PHO2_YPD PUT3_YPD

RCS1_YPD REB1_YPD RFX1_YPD RIM101_YPD RME1_YPD

RTG1_YPD RTG3_YPD SIP4_YPD SOK2_YPD STB1_YPD

STE12_YPD STP2_YPD SWI4_YPD SWI5_YPD SWI6_YPD

THI2_YPD YAP1_YPD YAP6_YPD YAP7_YPD YFL044C_YPD
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YJL206C_YPD

R> coef.f <- coef(f)

R> coef.f[1:5,1:5]

alpha0 alpha7 alpha14 alpha21 alpha28

ABF1_YPD 0.0000000 0.000000000 0.00000000 0.0000000000 0.000000000

ACE2_YPD 0.0874325 0.068452293 0.01374781 -0.0002541969 -0.033302624

ADR1_YPD 0.0000000 0.000000000 0.00000000 0.0000000000 0.000000000

ARG80_YPD -0.0486881 -0.019092797 0.02063442 0.0300421634 0.007925553

ARG81_YPD -0.0168849 0.009465868 0.06353825 0.0541704059 0.006978985

A plot that illuminates the �tting procedure is the coe�cient path plot given in Figure 2. This
plot illustrates how the coe�cient estimates change as a function of `K' for a given `eta'. The
coe�cient path plot for a speci�c value of `eta' can be obtained using the function `plot.spls'.
When there are many responses, it might not be a good idea to plot them all together. The
response of interest can be de�ned with the option `yvar'. If the option `yvar' is not speci�ed,
then `plot.spls' draws the coe�cient paths of all responses. The command below generates the
coe�cient path plot given in Figure 2.

R> plot.spls( f, yvar=1 )

In the yeast cell cycle data, the responses were repeatedly measured at di�erent time points.
In this case, it is useful to visualize how the estimated coe�cients change as a function of time.
The function `coefplot.spls' plots the estimated coe�cients of the �t obtained from the `spls'
function across all the responses. By default, `coefplot.spls' displays the estimated coe�cients of
the selected predictors. However, in the case that too many predictors are chosen, this might lead
to a crowded plotting area. We provide two options to avoid this. First, one can choose predictors
to be plotted by the option `xvar'. Note that the index number here is de�ned among the selected
variables. For example, `xvar = 1' refers to the �rst variable among the selected predictors. In
this example, `xvar' can be between 1 and 28. Second, one can also control the number of plots
that appear in each window using the option `nwin'. For example, `nwin = c(2,2)' indicates that
the plotting area will have 4 plots with two rows and two columns. An illustration of this plotting
option is given below and the resulting plots are displayed in Figure 3.

R> coefplot.spls( f, nwin=c(2,2), xvar=c(1:4) )

5 eQTL Application

In this section, we study the application of SPLS regression to the expression quantitative trait loci
(eQTL) mapping. We provide the mice dataset [3] as an example of the eQTL application. Mice
were collected from a F2-ob/ob cross and lacked a functional leptin protein hormone. The functional
leptin protein hormone is known to be important for reproduction and regulation of body weight and
metabolism. The predictors are the marker map consisting of 145 microsatellite markers from 19
non-sex mouse chromosomes. The responses are the gene expression measurements of 83 transcripts
from liver tissues of 60 mice. This group of 83 transcripts was obtained as one of the clusters, when
45,265 transcripts were clustered using a hierarchical clustering approach. See [2] for more details.

The mice dataset with the `y' matrix as the gene expression (responses) and the `x' matrix as
the marker map (predictors) can be loaded as follows:
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Figure 2: Coe�cient path plot of the SPLS �t for the yeast data when eta=0.7.

R> data(mice)

R> mice$x[1:5,1:5]

D1Mit64 D1Mit211 D1Mit303 D1Mit46 D1Mit87

1 2 2 2 2 1

2 2 2 2 2 2

3 2 2 2 2 2

4 2 2 2 3 3

5 2 1 3 3 3

R> mice$y[1:5,1:5]

1415889_a_at 1415965_at 1416308_at 1417017_at 1417208_at

2 6.82 10.56 9.79 7.96 8.34

3 8.28 10.26 10.31 8.86 9.35

4 9.10 11.42 9.92 9.13 9.34

5 8.74 10.99 10.56 8.61 9.31

6 7.16 8.56 10.08 9.66 8.28
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Figure 3: Plot of the estimated coe�cients.

The optimal parameters were chosen as `eta=0.6' and `K=1' from `cv.spls' as follows.

R> set.seed(1)

R> cv <- cv.spls( mice$x, mice$y, eta = seq(0.1,0.9,0.1), K = c(1:5) )

SPLS �ts are obtained as below.

R> f <- spls( mice$x, mice$y, eta = cv$eta.opt, K = cv$K.opt )

R> print(f)

Sparse Partial Least Squares for multivariate responses

----

Parameters: eta = 0.6, K = 1, kappa = 0.5

PLS algorithm:

pls2 for variable selection, simpls for model fitting

SPLS chose 30 variables among 145 variables
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Selected variables:

D2Mit274 D2Mit17 D2Mit106 D2Mit194 D2Mit263

D2Mit51 D2Mit49 D2Mit229 D2Mit148 D5Mit348

D5Mit75 D5Mit267 D5Mit259 D5Mit9 D5Mit240

D5Mit136 D8Mit249 D8Mit211 D8Mit113 D9Mit206

D9Mit2 D9Mit21 D9Mit207 D9Mit8 D9Mit15

D9Mit18 D15Mit174 D15Mit136 D15Mit63 D15Mit107

In this eQTL analysis, we can improve the initial SPLS �ts further as described in [2]. First, we
obtain the bootstrapped con�dence intervals for the coe�cients of the selected predictors using the
function `ci.spls'. `ci.spls' also provides the con�dence interval plots and lets users to control the
plots with two options, `plot.fix' and `plot.var'. If `plot.fix="x"', then the function `ci.spls'
plots the con�dence intervals of a given predictor speci�ed by the option `plot.var' across all the
responses. Similarly, `plot.fix="y"' draws the plot against the predictors for the given responses.
Note that if `plot.fix="x"', then the index number is de�ned among the selected variables. Figure
4 shows the con�dence interval plot of the coe�cients.

R> set.seed(1)

R> ci.f <- ci.spls( f, plot.it=TRUE, plot.fix='x', plot.var=20 )

The function `ci.spls' returns the list whose element is the matrix of the con�dence intervals
of the coe�cients. The names of elements of the list are the same as the column names of the
responses.

R> cis <- ci.f$cibeta

R> cis[[20]][1:5,]

2.5% 97.5%

D2Mit274 -0.004702266 0.02254638

D2Mit17 -0.005072756 0.02271000

D2Mit106 -0.004535333 0.02315933

D2Mit194 -0.005701689 0.02102956

D2Mit263 -0.005618393 0.02290074

After we obtain the con�dence intervals of the coe�cients, the function `correct.spls' updates
the coe�cient estimates of the selected variables by setting the coe�cients with zero-containing
con�dence intervals to zero. In addition, `correct.spls' provides the heatmap-type plots of the
original SPLS coe�cient estimates (Figure 5) and the corrected coe�cient estimates (Figure 6).

R> cf <- correct.spls( ci.f )

R> cf[15:20,1:5]

1415889_a_at 1415965_at 1416308_at 1417017_at 1417208_at

D2Mit327 0 0.00000000 0 0 0

D2Mit35 0 0.00000000 0 0 0

D2Mit249 0 0.00000000 0 0 0

D2Mit274 0 0.00000000 0 0 0

D2Mit17 0 0.04682557 0 0 0

D2Mit106 0 0.05103286 0 0 0
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Figure 4: Example plot of the con�dence intervals of the coe�cients.
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Figure 5: Plot of the original coe�cient estimates.
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Figure 6: Plot of the corrected coe�cient estimates.
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