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Abstract

The R package rrcov3way provides a set of tools for fitting the Tucker3 and PARAFAC
models to multidimensional arrays by use of classical, robust and compositional estimating
procedures. Two main functions are implemented, Parafac and Tucker3, which include
alternative options to the standard least squares algorithm in order to properly calculate
the models in case of data with outliers and/or characterized by a biased covariance
structure. A comprehensive collection of three-way plots, diagnostics and data processing
functions is also made available. A brief overview of multilinear tools, robustification
procedures and compositional data analysis for three-way arrays is followed by a detailed
presentation on the use and applicability of the implemented functions by means of real
data examples included in the package.
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1. Introduction

The most usual way to start exploring data on m objects in p continuous variables is by prin-
cipal component analysis (PCA). This procedure summarizes the most important information
in the data by representing the objects and the variables simultaneously by a limited number
of optimally selected components. The optimality of these components is intended in the
sense that they explain the maximal possible variance. The components remain optimal even
after rotation, thus, it is possible to search for a structure which allows for easier interpreta-
tion. If these data are measured at k occasions (conditions, times, locations), generalizations
of PCA, that can handle three-way data, are needed. The first such generalization that comes
at hand is PARAFAC (parallel factor analysis), alternatively called CANDECOMP (canonical
decomposition)(Harshman 1970; Carroll and Chang 1970). PARAFAC summarizes simulta-
neously the objects, variables and occasions in an optimally selected lower dimensional (with
a limited number of components) representation. The solution provided by PARAFAC is
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unique, i.e., it does not allow for rotation. Another popular trilinear decomposition method
is the Tucker3 model which was suggested already in 1966 by Tucker (1966) for solving three-
way problems in the field of psychometrics. The decomposition provided by the Tucker3
model results into a core array and three eigenvector matrices. In contrast to the PARAFAC
model, the solution provided by Tucker3 is not unique. Any arbitrary nonsingular rotation of
all components simultaneously will retain the model representation, producing a new solution.

While in the rest of this paper we will limit the discussion to three-way data, it is obvi-
ous that extension to higher orders is straightforward. With the nowadays advanced data
capture methods in across a variety of applications, producing complex data structures, mul-
tiway methods with their ability to uncover the underlying structures, gained wide popularity.
Originating in psychometrics these models are now applied in chemometrics, social networks,
process control, econometrics. This resulted into a large number of publications, see Acar
and Yener (2009) for a review. Kroonenberg (2016) provides a very personal view on the
development and the recent status of multiway analysis.

To make the models readily available for practical use, a number of software tools were devel-
oped, particularly in MATLAB with the most comprehensive package being the NWay toolbox
(Andersson and Bro 2000). A graphical interface to NWay is provided by CuBatch (Gourvnec
et al. 2005). The robust version of PARAFAC introduced by Engelen and Hubert (2011) is
provided in the MATLAB toolbox for robust statistics LIBRA (Verboven and Hubert 2010).
Currently several R packages are available at CRAN: PTAk of Leibovici (2000), ThreeWay of
Giordani et al. (2014), multiway of Helwig (2016) and rTensor of Li et al. (2018). In this work
another package for three-way modeling is presented, the package rrcov3way, which aims to
introduce additional tools not yet available in R. Specifically its content responds to the need
for flexible functions suited for appropriately dealing with problematic features such as the
presence of outliers and/or of a compositional structure in the data. The standard Tucker3
and PARAFAC estimating procedure, alternating least squares (ALS), is extremely sensitive
to the presence of anomalous observations, which may artificially inflate the variance and
skew the model away from the real underlying solution. For these reasons robust alternatives
to classical PARAFAC and Tucker3 models have been proposed. A robust version of Tucker3
based on the use of the minimum covariance determinant (MCD) estimator (Rousseeuw and
van Driessen 1999) was introduced by Pravdova et al. (2001). Later on Engelen and Hubert
(2011) extended this methodology to the PARAFAC model by also revealing and correcting
some of its inefficiencies. These inefficiencies were corrected also for the robust version of
Tucker3 model by Todorov et al. (2014) and at the same time a version for handling com-
positional data was proposed. The robust functions provided in rrcov3way for both Tucker3
and PARAFAC follow these two latter approaches.

Modeling compositional data also requires special tools. Compositions or CoDa (compo-
sitional data) are positive vectors that carry relative information and can be expressed as
proportions of a whole. The elements of such vectors are bounded by an explicit or im-
plicit sum constraint, which imposes a negative covariance bias and contradicts the typical
assumptions of classical multivariate statistics. Geometrically, this constraint translates into
compositions having one redundant dimension, therefore they are constricted in a subset of
real space defined as simplex, characterized by a specific geometry called Aitchison geometry
(Egozcue and Pawlowsky-Glahn 2005; Pawlowsky-Glahn and Egozcue 2016; Egozcue et al.
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2003, 2011). Standard models are designed to work without any bias within a Euclidean
framework (Pawlowsky-Glahn and Egozcue 2001; Billheimer et al. 2001) and would return
distorted results on compositions. The preferred strategy for modeling CoDa is to project
them onto Euclidean space by means of a transformation into log-ratio coordinates. Succes-
sively, classical analysis can be executed while results must be interpreted in compositional
terms. When the row vectors of a three-way array are compositional in nature, i.e., observa-
tions are expressed as the proportion of a total recorded at several occasions, this approach
must be followed before trilinear models can be fitted to the data. For this reason, compo-
sitional versions of the Tucker3 and PARAFAC models based on log-ratios were developed.
For details see Gallo (2015, 2013); Engle et al. (2013). Recently, a robust version of the
PARAFAC model for compositions was also developed in Di Palma et al. (2018). These com-
positional and robust-compositional variants of classical trilinear models are made available
in the rrcov3way package.

In brief, the main purpose of this work is to illustrate the unique tools introduced in the
R package rrcov3way for modeling three-way data and three-way compositions with or with-
out outliers. This is achieved by demonstrating through real data examples the relevance
and correct use of the standard, robust, compositional and compositional-robust procedures
included in the package and of other functions provided for the proper treatment and repre-
sentation of results. In detail, the paper is organized in the following manner. In Section 2
the innovative features of the rrcov3way package with respect to other existing packages in
R and MATLAB are illustrated. In Section 3 the theoretical background is introduced by
recalling some basic notions of standard trilinear models, robust procedures and composi-
tional data analysis for three-way data. Section 4 presents a quick “getting started” example
demonstrating main functions and necessary steps for a complete three-way data analysis.
For this purpose the OECD Electronics Industries Data from Kroonenberg (2008) are used.
As it is usual in developing R packages, rrcov3way contains many example data sets which
can be used to illustrate different features of the considered methodology. Examples based
on several of these data sets are presented in Section 6. Finally, Section 7 concludes with a
discussion of the package features, its limitations and the possible further extensions.

2. Why do we need rrcov3way?

In the previous section the main R packages for the analysis of three-way arrays were recalled,
namely PTak, ThreeWay, multiway and rTensor. They all implement general functions for
carrying out standard models, but at the same, by focusing on specific modeling needs, they
also provide different tools to the community. The PTak package aims to deal with the mod-
eling of data characterized by a spatio-temporal context. It introduces the multidimensional
method Principal Tensor Analysis on k-Modes, but it also provides standard PARAFAC and
Tucker3 functions. There are, however, some limitations on the minimal number of compo-
nents which can be extracted. This package also offers the advantage of providing procedures
which support non-identity metrics and penalization. The ThreeWay package provides a
more complete suite of functions for modeling three-way data. Here the emphasis is on the
PARAFAC and Tucker3 models. The main functions are also available as interactive tools
which guide the user step by step into the analysis, offering the possibility to choose con-
straints, pre-processing and post-processing alternatives. Other useful features include basic
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plotting tools and the possibility to obtain bootstrap percentile intervals. The multiway
package, on the other hand, concentrates on the generalization of component models to n-
dimensional arrays, in addition it offers the option to impose non-negativity constraints and
provides other functions such as Individual Differences Scaling, Multiway Covariates Regres-
sion and Simultaneous Component Analysis. Lastly, the rTensor package, offers a framework
for handling and analyzing n-th order tensors by providing the S4 class Tensor and common
tensor operations and decompositions, including the PARAFAC/CANDECOMP decomposi-
tion, Generalized Low Rank Approximations of Matrices, Multilinear Principal Component
Analysis, Population Value Decomposition and all Tucker models. The t-product and the
t-singular value decomposition are also implemented for three-mode cases.

It is clear that none of the existing R packages provides robust versions of standard decom-
positions for dealing with three-way data contaminated by outliers. Such tools are available
only in MATLAB. Here the LIBRA package implements a robust PARAFAC model while the
CuBatch interface allows for outliers identification analysis by providing an advanced ver-
sion of the NWay toolbox, a compendium of all multi-way functions in the environment. In
this perspective the first important contribution of the rrcov3way package is to integrate the
classical functions for the decomposition of three-mode data with robust tools. Moreover it
adds another advanced feature which none of the above packages provides: multi-way mod-
eling of compositional data. Like other statistical tools, the PARAFAC and Tucker3 models
cannot be applied directly to compositions due to the spurious correlations issue, therefore
a specific methodology must be followed. The attention on compositional data analysis has
increased in the past years and its usage has spread to various disciplines such as chemistry,
geosciences, biology, agriculture, but also human and behavioral sciences. This increase in
applicability is also due to the broadening of the concept of composition, which now also
included implicit sum constraints and problems with both dimensional and relative aspects
(Pawlowsky-Glahn et al. 2015b,a). Tailoring standard multilinear tools to this methodology
can, thus, prove of great interest. For this reason an option to carry out a compositional
version of model functions is included in the package. Specifically, the included Parafac()
and Tucker3() functions present the option of carrying out four different types of analysis
by means of two parameters, robust=TRUE/FALSE and coda.transform="none" (default) or
coda.transform="ilr":

1. Classical Analysis: the model is estimated on the original array entries (with or without
standard preprocessing) using the alternating least square (ALS) algorithm (robust=FALSE,
coda.transform="none");

2. Robust Analysis: the original array is robustified and then the ALS algorithm is
performed. Outliers are identified and accommodated without affecting the solution
(robust=TRUE, coda.transform="none");

3. Compositional Analysis: data are transformed in log-ratio coordinates, the ALS al-
gorithm is performed and the output is expressed in log-contrasts (robust=FALSE,
coda.transform="ilr" or coda.transform="clr");

4. Robust and Compositional Analysis: data are first expressed in log-ratio coordinates,
then the transformed array is robustified and ultimately the ALS algorithm is performed
(robust=TRUE, coda.transform="ilr").
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These four types of analysis are provided in rrcov3way for both PARAFAC and Tucker3
models. Compared to the other existing software packages, ThreeWay and the other already
mentioned R packages as well as the MATLAB packages NWay and CuBatch cover only (1),
while the robustness MATLAB package LIBRA covers only (2) for PARAFAC model. The
compositional versions (3) and (4) as well as the robust version of Tucker3 from (2) are avail-
able only in rrcov3way.

The package rrcov3way relies on several functions imported from the package Threeway as
well as on functions for robust PCA imported from package rrcov (Todorov and Filzmoser
2009) and functions for robust preprocessing imported from package robustbase (Rousseeuw
et al. 2012). The package nnls (Mullen and van Stokkum 2012) is used for the Lawson-Hanson
algorithm for non-negative least squares (NNLS) and several utility mathematical functions
are imported from package pracma (Borchers 2021).

In addition the package also includes a useful set of plotting tools which allow for quick
and correct visualization of the main results. Details on the treatment of compositions and
robustification procedures are provided in the following section.

3. Methods and algorithms for three-way data analysis

In standard multivariate analysis the main data structure is a matrix of two dimensions, say
X of order I × J with I and J denoting the number of objects and variables, while in three-
way analysis we deal with data collected into three dimensional arrays (tensors) X of order
I × J × K. A three dimensional array can be visualized as a box consisting of k = 1 . . . K
frontal slices Xk, containing the I × J object by variables matrices, one matrix for each occa-
sion. Similarly, if the objects or variables index is fixed instead of the one for occasions, the
array can be seen also as a collection of horizontal slices Xi of dimension K × J or vertical
slices Xj of dimension I × K. In general, rather than speaking about objects, variables and
occasions, the three entities of the array are defined as modes, namely A, B and C mode
respectively. A three-way array can be converted into a two-way matrix if two-way slices are
juxtaposed by row or column (Kroonenberg 2008, p.7). This operation is defined as matri-
cization or unfolding. In particular an array is matricized with respect to the first mode if
frontal slices are put next to each other row-wise. In this manner a (I × JK) wide-matrix
XA = [X1| . . . |Xk| . . . |XK ] is obtained, which is often used to write decomposition models in
a simplified manner.

Three-way data are generally modeled by standard multilinear tools, namely the PARAFAC
and Tucker3 models, which can be defined as different generalization of PCA to higher or-
der arrays inheriting distinct features of this technique. The Tucker3 model aims to pro-
vide the best approximation of a three-way array within a joint low-dimensional subspace.
Consequently, it is characterized by subspace uniqueness and rotational freedom, but does
not provide a unique solution or equal number of components across modes like PCA. The
PARAFAC model yields the best low-rank approximation of the array by including the addi-
tional constraint that each component in a given mode is related to only one component in
the other modes, thus a unique solution can be identified but the model cannot be rotated
without loss of fit. Here the two models are briefly recalled for completeness, for more details
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on their properties see Harshman and Lundy (1994), Smilde et al. (2004) and Kroonenberg
(2008).

3.1. Tucker3 model

The Tucker3 model (see Tucker 1966; Andersson and Bro 2000) with P , Q and R components
decomposes the data array X into three orthogonal loading matrices A (I × P ), B (J × Q),
C (K × R) and an array of component interactions called core array G (P × Q × R) which
describes the relation between combinations of components. The Tucker3 model can be
written formally as

XA = AGA(C ⊗ B)⊤ + EA (1)
where XA, GA (P × QR) and EA (I × JK) are the original array, the core array and the
error array matricized with respect to the mode A. The symbol ⊗ represents the Kronecker
product between two matrices. To estimate the optimal component matrices the residual sum
of squares

||EA||2 =
I∑

i=1

J∑
j=1

K∑
k=1

(xijk − x̂ijk)2 =
I∑

i=1
||xi − x̂i||2 =

I∑
i=1

RD2
i (2)

is minimized. The residual distance for observation i is thus given by

RDi = ||xi − x̂i|| =

√√√√ J∑
j=1

K∑
k=1

(xijk − x̂ijk)2 (3)

and the estimation is equivalent to the minimization of the sum of the squared distances.
Three-way models are usually fitted by an iterative procedure based on alternating least
squares, TUCKALS3 (Kroonenberg 1988). The component matrices are estimated one at a
time, keeping the estimates of the other component matrices fixed, i.e., we start with initial
estimates of B and C and find an estimate for A conditional on B and C by minimizing the
objective function. Estimates for B and C are found analogously. The iteration continues
until the relative change in the model fit is smaller than a predefined constant.

3.2. PARAFAC model

The PARAFAC/CANDECOMP model (see Carroll and Chang 1970; Harshman 1970) de-
composes the 3-way data array X into three loading matrices A (I × F ), B (J × F ), C
(K × F ) with F components (using the same number for each mode).
The PARAFAC model can be written formally as

XA = AIA(C ⊗ B)⊤ + EA, (4)

where XA, EA and ⊗ are defined as in Equation 1 and IA (F × FF ) is the superdiagonal
three-way identity array matricized in mode A, which substitutes the core matrix of the
Tucker3 model, because here the latent structure is the same across modes. Specifically, the
PARAFAC model can be considered a constraint version of Tucker3 with the same number
of components for each mode (P = Q = R = F ), no interaction between the components is
allowed. Similarly as for the Tucker3 model, a PARAFAC-ALS estimation algorithm can be
constructed optimizing a residual sum. Analogously, residual distances RDi are defined as
given in Equation 3.
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3.3. Robust algorithms

It is well-known that algorithms which rely on least squares break down in the presence of
outliers. This is the case of PCA, for which this problem was extensively studied and a number
of robust algorithms, resistant to outliers, were proposed. Similarly, the ALS procedure is
badly affected by anomalous observations in the data and robust algorithms for three-way
procedures are also needed. A robust version of Tucker3 was proposed by Pravdova et al.
(2001), later improved and adapted for PARAFAC by Engelen and Hubert (2011). The idea
of a robust version of PARAFAC or Tucker3 is to identify enough “good” observations and
then to perform the classical ALS procedure on these observations. Thereafter, results are
used to compute the residual distances for all observations according to Equation 3 and select
as “good” observations those that have smaller residual distances. This is repeated until
no significant change is observed. Finally a reweighting step is carried out to improve the
efficiency of the estimates. In order to initially identify the “good” observations, a robust
version of principal component analysis, e.g., ROBPCA (Hubert et al. 2005; Todorov and
Filzmoser 2009) on the matricized array is used. The convergence of the algorithm can be
ensured (Engelen and Hubert 2011), however, it is not guaranteed that a global optimum
will be found. In order to label extreme points once the robust ALS-procedure is performed,
two distances are computed: the robust residual distance calculated as in Equation 3 which
indicates how well the fitted data correspond to the observations and the robust score distance,
a Mahalanobis-type distance in the scores space defined as:

SDi =
√

(âi − µ̂)⊤Σ̂−1(âi − µ̂), (5)

where âi is the i-th row (i-th score) of the matrix Â, and µ̂ and Σ̂ are estimates of location
and covariance, respectively, of Â. For more details on the theoretical aspects of the robust
PARAFAC algorithm included in rrcov3way see Engelen and Hubert (2011).

3.4. Compositional analysis

A three-way compositional array can be organized in such way that the rows of X consist of
K concatenated J-part compositional vectors in the simplex sample space:

SJ
k =

{
xik = (xi1k, . . . , xijk, . . . , xiJk), xijk > 0, ∀j,

J∑
j=1

xijk = κ

}
, (6)

where the constant κ can assume any value, for example 1 for unit data. Before applying
PARAFAC or Tucker3 algorithms (robust or classical), compositions have to be transformed
to Euclidean space coordinates. Following the approach proposed by Aitchison, an isomet-
ric mapping between SJ

k and a hyperplane of RJ is given by the centered log-ratio (clr)
coordinates Aitchison (1986):

yik = clr(xik) = (yi1k, . . . , yiJk) =

ln xi1k

J

√∏J
j=1 xijk

, . . . , ln xiJk

J

√∏J
j=1 xijk

 . (7)

The vectors yik (i = 1, . . . , I) can be collected as rows in the matrix Y k, for different occa-
sions k = 1, . . . , K, resulting in a matrix Y k, namely the clr-coordinates version of the slice
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Xk, or differently it can be thought as the k-th slice of a three-way array Y . The new clr co-
ordinates sum to zero by construction (Aitchison 1986), resulting in perfect data collinearity.
This is not an issue for classic PARAFAC and Tucker3 but creates problems in case of anoma-
lous observations. Outliers in a compositional framework are not necessarily represented by
extreme values but rather by anomalous ratios between elements. An outlier in three-way
compositional data occurs if a composition is very different form the others in terms of ratio
between parts for one occasion or for combined occasions. Standard robust estimators are
inapplicable on clr coordinates due to the singular covariance matrices (Maronna et al. 2006),
consequently, it becomes necessary to formulate the problem using an alternative coordinate
system.

The isometric log-ratio (ilr) transformation was introduces by Egozcue et al. (2003) who
demonstrated that the ilr-values of a composition represent an isometric mapping from SJ

k

to RJ−1. Here the formalization is reported for a three-way case:

zik = ilr(xik) = (zi1k, . . . , zi,J−1,k) =
√

J − j

J − j + 1 ln xijk

J−j

√∏J
l=j+1 xilk

, (8)

with j = 1, . . . , J − 1. For full details on the Tucker3 or PARAFAC analysis for Coda see
Gallo (2015); Engle et al. (2013).

Robust PARAFAC and Tucker3 models can be carried out on arrays of ilr coordinates with-
out further concerns. Therefore this is the approach implemented in the rrcov3way functions
for CoDa. For more details on robust PARAFAC analysis for CoDa see (Di Palma et al. 2018).

The ilr coordinates present the disadvantage of being hard to interpret and plot. However,
with easy computations, results can be translated in clr terms. Specifically the loading ma-
trices A and C computed by both models are invariant under a change of basis, which means
that their estimates are the same whether ilr or clr coordinates are used. The only difference
is recorded in the second mode. In particular the loading matrices Bclr and Bilr are different,
but are linked by the relation Bclr = ΨBilr with Ψ⊤Ψ = IJ−1 and ΨΨ⊤ = IJ − 1j1⊤

j /J .
Hence, in rrcov3way, CoDa functions yield both Bclr and Bilr as standard outputs to facili-
tate interpretation.

4. Getting started with rrcov3way
The package rrcov3way contains several built-in data sets which can be used for demonstrating
its functionality, therefore we start by loading the package and one of the available data sets
- elind, the OECD Electronics Industries Data from Kroonenberg (2008).

R> library("rrcov3way")
R> data("elind")

The organisation for economic co-operation and development (OECD) publishes comparative
statistics of the export size of various sectors of the electronics industry: information science,
telecommunication products, radio and television equipment, components and parts, electro-
medical equipment and scientific equipment. The data consist of specialization indices of
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electronics industries of 23 European countries for the years 1973-1979. The specialization
index is defined as the proportion of the monetary value of an electronic industry compared to
the total export value of manufactured goods of a country compared to the similar proportion
for the world as a whole (see D’Ambra 1985). Let us look at what it is in the data set - its
dimensions and labels of each of the modes.

R> dim(elind)

[1] 23 6 7

The data set is a three-way array with dimension 23 × 6 × 7. The frontal slices (mode C) are
matrices with dimension 23 × 6 representing the data for all countries and all industries in
one year. The labels are:

R> rownames(elind[, , 1])

[1] "CA" "US" "JP" "AS" "NZ" "BL" "DA" "FR" "RF" "GR" "IR" "IT" "PB"
[14] "RU" "AU" "FI" "NO" "PO" "SP" "SV" "CH" "TU" "YU"

R> colnames(elind[, , 1])

[1] "INFO" "RADI" "TELE" "STRU" "ELET" "COMP"

The lateral slices (mode B) represent the data for all countries and years for one industry—
matrices with dimension 23 x 7 and the labels are:

R> rownames(elind[, 1, ])

[1] "CA" "US" "JP" "AS" "NZ" "BL" "DA" "FR" "RF" "GR" "IR" "IT" "PB"
[14] "RU" "AU" "FI" "NO" "PO" "SP" "SV" "CH" "TU" "YU"

R> colnames(elind[, 1, ])

[1] "78" "79" "80" "82" "83" "84" "85"

First of all we center and scale the data, using the default procedures for centering and scaling.

R> elind <- do3Scale(elind, center = TRUE, scale = TRUE)

For this purpose we use the function do3Scale() which by default will center the data across
mode A by subtracting the arithmetic mean column-wise and will scale within mode B to
sum of squares equal to 1. Next we perform classical PARAFAC analysis with the default
number of components (ncomp=2).

R> res <- Parafac(elind, ncomp = 3)
R> res
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Call:
Parafac(X = elind, ncomp = 3)

PARAFAC analysis with 3 components.
Fit value: 2.522052
Fit percentage: 57.97 %

The function returns an S3 object containing a fit value expressed as a percentage and the
component matrices for the different modes. The default print() method specifies the model
and shows the fit value in per cent. It is possible to inspect any of the component matrices
directly:

R> head(res$A)

F1 F2 F3
CA -0.2980078 0.08398107 -0.033569987
US -0.5126965 0.07885976 -0.108836753
JP 0.1287322 0.09235940 -0.060627127
AS -0.2394439 -0.01317781 0.003263554
NZ 0.4328426 0.04546451 0.138267386
BL 0.1990861 0.10849740 -0.003917593

R> res$B

F1 F2 F3
INFO 0.4378567 -0.0604180 0.3612415
RADI -0.6320345 -0.2479465 1.2754206
TELE 0.2645014 -0.1582009 -1.4604508
STRU -0.1286168 -0.2040993 -0.9765811
ELET 0.2724291 -0.1118437 -0.4752046
COMP -0.1925610 1.5116556 1.1411687

Next we can produce different plots using the standard method plot(). The default plot
is a distance-distance plot presenting the residual distances against the score distances. The
first distance expresses the closeness between a single point and its projection in the subspace
spanned by the first two principal components while the second measure computes how far
a score point is from the majority of the data (score matrix) projected in the principal com-
ponent subspace, it is compared to the classical Mahalanobis distance. Outliers are labeled
analyzing the distribution of the residual distance (RD) and the score distance (SD), an ob-
servation is declared to be an extreme point if exceeds a specific threshold (dashed line), the
cut-off value is different for both measures. Robust and classical version for both distances,
their computations and cut-off identification are presented in detail in Section 5.1. In the left
panel of Fig. 1 the classical distances are presented, since we have not selected the robust op-
tion. We see that Turkey is marked as an outlier. Compare with Kroonenberg (2008), where
Turkey is identified as outlier even with the residuals plots introduced there. The analysis is
then repeated using the robust version of the PARAFAC model and the results are presented
in the right panel of Fig. 1 in a distance-distance plot (the default plot).
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R> (resr <- Parafac(elind, ncomp = 3, robust = TRUE))

Call:
Parafac(X = elind, ncomp = 3, robust = TRUE)

PARAFAC analysis with 3 components.
Fit value: 1.373117
Fit percentage: 77.11 %
Robust

R> oldpar <- par(mfrow = c(1,2))
R> plot(res, main = "Classical distance-distance plot")
R> plot(resr, main = "Robust distance-distance plot")
R> par(oldpar)
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Figure 1: Classical and robust distance-distance plot for the PARAFAC model with 3 com-
ponents of the OECD data.

Now not only Turkey is flagged as a bad leverage point, but also Poland. Greece, New
Zealand, Denmark and Switzerland are shown as residual outliers.

Another plot can be selected using the argument which="comp" while the argument mode
selects the mode (A, B or C) to display. By default the component plot for mode A will be
shown. If we want to present a paired component plot for other modes, we use for example
the argument mode="B" for mode B. An example of a paired component plot for a robust
three component PARAFAC model of the OECD data is shown in Fig. 2.
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R> oldpar <- par(mfrow = c(1,2))
R> plot(resr, which = "comp", main = "Paired component plot (mode A)")
R> plot(resr, which = "comp", mode = "B",
+ main = "Paired component plot (mode B)")
R> par(oldpar)
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Figure 2: Paired component plot for a robust three component PARAFAC model of the
OECD data. The left panel presents mode A and the right one mode B.

The available plots will be described in Section 5.5 and will be demonstrated in the example
Section 6.

5. Software approach

In this section first the data structures and their manipulation will be considered and then the
main model fitting interface will be described. This includes the main estimation functions,
their control options and the objects returned. Further, the important steps in the three-way
analysis like preprocessing and postprocessing will be presented.

5.1. Data structure and data manipulation

The main data structure used throughout the package is a three dimensional array. The
dimnames are the labels of the three modes. We can think of the three dimensional array as
consisting of K frontal, I horizontal and J lateral slices, as shown in the left-hand side of
Fig. 3, (see Kiers 2000a). All data sets provided with the package are in this format.



Valentin Todorov, Violetta Simonacci, Maria Anna Di Palma, Michele Gallo 13

Figure 3: Matricization of a three-way array into mode A matrix XA, mode B matrix XB

and mode C matrix XC

In some cases, particularly in most of the computational algorithms, it is more convenient to
represent the three-way array as a two dimensional matrix by joining the slices in a specific
way. This procedure is called matricization or unfolding of the three dimensional array and
can be done in one of the three possible ways shown in Fig. 3 on the right. These matrices
will be denoted in the code as Xa, Xb and Xc respectively. To convert a three-way array to one
of these matrices the function unfold() can be used, specifying the required mode (defaults
to mode="A"). To restore back a matricized array to a three dimensional array the function
toArray() is used. Let us consider as an example (Kiers 2000a, Section 2.6) a 4 × 3 × 2 array
consisting of the following two frontal slices:

1 2 0
0 1 0
1 0 −1

−1 0 0

 and


0 1 0
1 0 0
1 2 0
0 0 1


R> x <- c(1, 0, 1, -1, 2, 1, 0, 0, 0, 0, -1, 0, 0, 1, 1, 0, 1,
+ 0, 2, 0, 0, 0, 0, 1)
R> X <- array(x, dim = c(4, 3, 2))
R> dimnames(X) <- list(1:4, 1:3, 1:2)
R> X
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, , 1

1 2 3
1 1 2 0
2 0 1 0
3 1 0 -1
4 -1 0 0

, , 2

1 2 3
1 0 1 0
2 1 0 0
3 1 2 0
4 0 0 1

R> (Xa <- unfold(X))

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 0 0 1 0
[2,] 0 1 0 1 0 0
[3,] 1 0 -1 1 2 0
[4,] -1 0 0 0 0 1

R> (Xb <- unfold(X, mode = "B"))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 0 0 1 1 1 -1 0
[2,] 2 1 1 0 0 2 0 0
[3,] 0 0 0 0 -1 0 0 1

R> (Xc <- unfold(X, mode = "C"))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,] 1 0 1 -1 2 1 0 0 0 0 -1 0
[2,] 0 1 1 0 1 0 2 0 0 0 0 1

These three forms of matricizations are related to each other by a simple cyclic permutation
of the modes, which is executed by the function permute(). Another usage of the matricized
format is to read three-way arrays from and write to files.

5.2. Model fitting interface

The modeling interface of the rrcov3way consists of two main functions, Parafac() and
Tucker3() for estimating the corresponding models. These functions take as an input a
three-dimensional data array and return an S3 object parafac or tucker3 respectively. These
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objects are basically lists containing the estimated loadings matrices A, B and C (plus the core
array GA in case of Tucker3), different estimation options and results, like the fit value and the
number of iterations performed, as well as diagnostic output like the residual distances and the
outlier flags. On these objects a number of standard (R) functions can be applied: print(),
show(), summary(), plot() as well as a number of postprocessing functions which will be de-
scribed in the next section. Whether to perform robust analysis is controlled by the parameter
robust=FALSE (default) or robust=TRUE. Similarly, whether to take into account the closeness
of the data (compositional or not) is controlled by the parameter coda.transform="none" or
coda.transform="ilr". Of course this parameter could have been also logical like robust,
but in this way we left the door open for implementing other transformations for compositional
data like the pivot coordinates or weighted pivot coordinates (see Filzmoser et al. 2018).

Initialization of the algorithms

For starting the ALS estimation it is necessary to provide initial values of the loading ma-
trices. Good starting values could potentially speed up the algorithm and ensure that the
global minimum is found. By default the initial values are based on an approximate solution
obtained from the generalized singular value decomposition. Alternatively the user can select
random start matrices by setting stat="random" or provide a list of three matrices, to be
used as starting values.

For stopping the iterations the relative change in fit between two iterations is used, the algo-
rithm stops if it is below a certain value given by the parameter conv. By default conv=1e-6.

Constrained estimation for PARAFAC

Sometimes it is necessary to constrain the PARAFAC solution in order to improve the in-
terpretability or for other reasons. In psychometrics orthogonality constraints are often used
as a means of overcoming problems with unstable solutions. In chemometrics the preferred
constraint is nonnegativity of the solution producing nonnegative loadings. A general method
to find the least squares loading vector given a nonnegativity constraint has been proposed
by Lawson and Hanson (1995) which is implemented in the R package nnls. Constraints
are requested from the Parafac() function using the parameter const. The default is
const="none" for no constraints. Orthogonality constraints for all modes are requested by
const="orth", nonnegativity constraints by const="nonneg" and const="zerocor" means
zero correlations constraints. Examples for using nonnegativity constraints in PARAFAC can
be found in Section 6.3.

Parameters for robust estimation

Selecting robust=TRUE in the call of the modeling function (Parafac() or Tucker3()), robust
estimation will be performed for which several more parameters can be selected.

First of all the level of robustness, the so called breakdown point can be set between 0.5
(maximal robustness) and 0 (no robustness). This is done through the parameter alpha
which is passed to the function PcaHubert(). The default value is alpha=0.75 which gives
high robustness of 25% and acceptable efficiency. It can be changed to a value in the range
from alpha=0.5 for maximal robustness to alpha=1 for no robustness.
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The next parameter related to robustness is the number of components k to use in the
robust PCA carried out in the first step of the robust PARAFAC or Tucker3 algorithms.
By default ncomp.rpca=0 which forces the algorithm to find k such that lk/l1 ≥ 10−3 and∑k

j=1 lj/
∑r

j=1 lj ≥ 0.8, where l1, . . . , lr are the eigenvalues of the sample covariance matrix
of the data. Alternatively the number of principal components k can be specified by the
user after inspecting the scree plot. Both Parafac() and Tucker3() functions return a PCA
object pcaobj which can be used to visualize the scree plot as follows:

R> data("elind")
R> (o <- Parafac(elind, robust = TRUE, ncomp.rpca = 11))

Call:
Parafac(X = elind, robust = TRUE, ncomp.rpca = 11)

PARAFAC analysis with 2 components.
Fit value: 243.5351
Fit percentage: 85.12 %
Robust

R> rrcov::screeplot(o$pcaobj, main = "Screeplot: elind data")
R> o1 <- Parafac(elind, robust = TRUE)
R> cat("\n Selected number of components: ", o1$pcaobj$k, "\n")

Selected number of components: 4
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Screeplot: elind data
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Figure 4: Selecting the number of components for robust PCA: The screeplot.

The screen plot suggests 4 components, but this is also the number of components which will
be selected by the default method described above. For more details on robust PCA in R see
(Todorov and Filzmoser 2009).

Another parameter related to robust estimations is robiter which specifyies the maximal
number of ALS iterations necessary to achieve a robust fit. By default robiter=100 which
in most of the cases is sufficient.

The last robustness parameter is crit which specifies the quantile for identifying outliers,
for example in the outlier map plot shown in Fig. 6.

5.3. Preprocessing

In three-way analysis, in the same way as in multivariate analysis it is important to prepare
the data before starting the actual analysis. Often this preprocessing is a complex procedure,
specific for the application domain (see for example Engelen et al. 2007). The most general
preprocessing functions are removing the possible offset (centering) and bringing the variables
to the same scale (scaling or normalizing). While in multivariate analysis these procedures
are straightforward, in three-way analysis we have more options (modes) of doing this. The
most standard preprocessing procedure is to center across the first (A) mode and to normalize
within the second (B) mode. This will (in most of the cases) eliminate differences in levels
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and scales which are not natural to the data. It is important to note that the multivariate
methods, including PARAFAC and Tucker3, require ratio-scale data. Ratio scale data are
represented by proportional values and the lack of the measured property is embodied by the
zero. Usually data at hand are interval scaled and the centering procedure will turn them
into ratio-scaled. If data are not approximately ratio-scaled, centering is mandatory. On the
other hand, scaling is related to the estimation procedure and is intended to make the data
compatible with the least squares.

Centering across a mode (by default mode A is selected) is performed by first matricizing
the array into the selected mode and then subtracting a column measure of location from the
columns of the matrix (same as in two way analysis). If the selected location is the arithmetic
mean the centering for mode A is done as follows :

zijk = xijk − x̄.jk = xijk − 1
I

I∑
i=1

xijk

Since only a single mode is affected, this is usually called single centering. In a similar way
centering is applied to any other mode. In the package rrcov3way centering is done by the
function do3Scale(), setting the parameter center=TRUE. We try this on the OECD data
set (we could skip center.mode="A" since this is the default). Setting center=TRUE will by
default subtract the arithmetic mean, but it is possible to specify any suitable function, for
example center=median will subtract the median.

R> elind.cA <- do3Scale(elind, center = TRUE, center.mode = "A")
R> round(colMeans(elind.cA[, , 1]), 10)

INFO RADI TELE STRU ELET COMP
0 0 0 0 0 0

If it is necessary to center across several modes, this is done sequentially, providing the result
of one operation to the next. The first centering (say, across mode A) will not be destroyed.

R> elind.cAB <- do3Scale(elind.cA, center = TRUE, center.mode = "B")
R> round(colMeans(elind.cAB[, , 1]), 10)

INFO RADI TELE STRU ELET COMP
0 0 0 0 0 0

Differently from centering, it is not appropriate to scale the unfolded array column-wise, but
rather whole submatrices of the array should be scaled. Mathematically scaling within mode
B can be described as follows:

zijk = xijk√√√√( I∑
i=1

K∑
k=1

xijk2

)

The scaling is also done by the function do3Scale() setting scale=TRUE. The default mode
is B. If required to scale not by the sum of squares but by the standard deviation as usually
done in profile analysis (see Kroonenberg et al. 2009), we simply set the scale parameter to
the function: scale=sd.
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R> elind.cAsB <- do3Scale(elind, center = TRUE, scale = TRUE)

If robust scaling is required we could use some robust alternative of the scale function, like
MAD or Qn.

R> elind.cAsB <- do3Scale(elind, center = TRUE, scale = mad)

Let us consider the following very simple simulated example (Bro 2008), where, with the
matrices A = B = C = (1, 2, 3, 4)⊤ a PARAFAC model X = A(B ⊗ C)⊤ is constructed. The
estimated model with one component has 100% fit and it obtains the same fit if the data
are scaled across the first mode. If we center by subtracting the grand average, the fit drops
dramatically.

R> A <- B <- C <- matrix(c(1, 2, 3, 4)) + 10
R> X0 <- A %*% t(krp(C, B))
R> X <- toArray(X0, 4, 4, 4)
R> Parafac(X, ncomp = 1)$fp

[1] 100

R> Parafac(do3Scale(X, center = TRUE), ncomp = 1)$fp

[1] 100

R> Parafac(X - mean(X), ncomp = 1)$fp

[1] 50.11853

R> Parafac(do3Scale(X, center = TRUE, scale = TRUE), ncomp = 1)$fp

[1] 100

Instead of doing the centering and scaling in advance, it is possible to instruct the Parafac()
and Tucker3() functions to do this by setting the parameters center=TRUE and/or scale=TRUE.

5.4. Postprocessing

Once the parameters are estimated and the model is built, different procedures can be applied
on the solution in order to facilitate the interpretation. These can be different transformations
and rotations, rescaling of components and/or core array, reflecting the sign or reordering the
components.

Renormalization. Once the solution is obtained, it could be necessary to scale the compo-
nents in order to make them comparable across modes or to facilitate plotting. Kroonenberg
(2008) considers three ways of adjusting the components for subsequent analysis and visual-
ization and the most basic of them is the renormalization, i.e., bringing the components to a
unit length, i.e., ∑ a2

ip = 1 for each component p = 1, . . . , P . The components returned by
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the Tucker3 algorithm implemented in the function Tucker3() are already normalized, but
it is possible that one wants the core array to be normalized. The components returned by
the PARAFAC algorithm are by default not normalized. It is important to note, that it is
necessary to compensate the scaling of components by the inverse scaling of the core array
or other components. Renormalization is done by the S3 method do3Scale() for Tucker3
or PARAFAC respectively. With the following script the core array of the Tucker3 model
will be normalized to unit row sums and the compensation will be absorbed by the A mode
(default). With renorm="B" we can choose another mode to absorb the compensation.

R> t3 <- Tucker3(elind, 3, 2, 2)
R> t3.norm <- do3Scale(t3, renorm.mode = "A")
R> rowSums(t3.norm$GA ^ 2)

F1 F2 F3
1 1 1

Similarly, in PARAFAC with for example renorm="A" (default) we choose to renormalize the
components of the modes B and C to unit length while the components of mode A will absorb
the compensation.

R> cp <- Parafac(elind, ncomp = 3)
R> cp.norm <- do3Scale(cp, renorm.mode = "A")
R> colSums(cp.norm$B ^ 2)

F1 F2 F3
1 1 1

R> colSums(cp.norm$C ^ 2)

F1 F2 F3
1 1 1

Rotation. As already mentioned in the introduction, the decomposition provided by the
Tucker3 model is not unique. Any arbitrary nonsingular rotation of all components simulta-
neously will retain the model representation and thus will produce a new solution. Tucker
(1966) showed that postmultiplying A, B, and C by non singular matrices, i.e., L, M , and
N , can always be compensated for by applying the inverse of these matrices to the core array.
It can be verified that

XA = AGA(C ⊗ B)⊤ + EA = ÃG̃A(C̃ ⊗ B̃)⊤ + EA (9)

with Ã = AL−1, B̃ = BM−1, C̃ = CN−1 and G̃A = LGA(N ⊗ M). This rotational
freedom of the Tucker3 model can be exploited to obtain a simplified, easier to interpret form
of the core array. Since such rotation can distort the simplicity of the component matrices,
a trade-off can be searched for, as proposed by Kiers (1998). This is a general procedure
for joint rotation of the core array and the component matrices, allowing any combination of
relative weights to be attached to the simplicity of core versus the simplicity of the component
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matrices.

In rrcov3way this method is implemented in the function do3rotation() which transforms
a Tucker3 solution into a simpler one using the provided as parameters relative weights. By
default the rotation is done on all modes: rotate=c("A", "B", "C"). To illustrate the use
of this function, the OECD data elind will be used. In the following example the Tucker3
solution with 3x2x2 components will be simplified by rotating all three component matrices
using equal relative weights wA = wB = wC = 3. The function will update the solution t3
with the rotated core t3$GA and the component matrices A, B and C. The varimax values will
be returned (in vvalue) as well as the rotation matrices S, T and U.

R> data("elind")
R> t3 <- Tucker3(elind, 3, 2, 2)
R> xout <- do3Rotate(t3, c(3, 3, 3), rotate = c("A", "B", "C"))
R> xout$vvalue

GA A B C
3.136374 5.888002 2.543755 1.378694

With relative weights all equal to 0, wA = wB = wC = 0, maximal simplicity of the core
array is achieved. On the other hand, all weights equal to infinity yield maximal simplicity
of the component matrices. By choosing appropriate combination of the weights, reasonable
simplicity of both the core array and the component matrices can be obtained. The following
Table 1 shows the varimax values for the core array and the component matrices for different
joint varimax rotations (given by different relative weights) to the Tucker3 solution with 3x2x2
components of the OECD data.

w(A) w(B) w(C) Core A B C
1 6.87 4.48 1.39 0.74
2 0.00 0.00 0.00 6.88 4.44 1.42 0.72
3 0.50 0.50 0.50 6.70 4.86 1.69 0.80
4 1.00 1.00 1.00 6.15 5.18 2.01 0.89
5 2.50 2.50 2.50 3.64 5.82 2.51 1.30
6 3.00 3.00 3.00 3.14 5.89 2.54 1.38
7 3.50 3.50 3.50 2.81 5.93 2.56 1.43
8 4.00 4.00 4.00 2.60 5.95 2.56 1.46
9 5.00 5.00 5.00 2.33 5.97 2.57 1.49

10 10.00 10.00 10.00 1.93 5.99 2.57 1.52
11 Inf Inf Inf 1.65 6.00 2.57 1.53

Table 1: Varimax values for the core array and the component matrices for different joint
varimax rotations to the Tucker3 solution with 3x2x2 components of the OECD data

From this table we can see that the solution with all relative weights equal to 3 is the best
compromise between simplicity of core array and component matrices. The next four tables
show the unrotated and rotated with relative weights (3, 3, 3) solutions and allow to observe
to what extent the interpretability of the model was improved.
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F1 F2 F3 F1 F2 F3
CA -0.16 -0.05 0.06 0.17 -0.02 0.02
US -0.16 -0.06 0.07 0.18 -0.03 0.01
JP -0.21 0.33 -0.11 0.02 0.18 0.36
AS -0.18 -0.17 0.02 0.23 0.02 -0.09
NZ -0.22 -0.23 -0.11 0.27 0.14 -0.15
BL -0.23 0.23 -0.04 0.10 0.12 0.29
DA -0.26 -0.02 0.13 0.27 -0.06 0.10
FR -0.19 -0.15 0.07 0.25 -0.03 -0.05
RF -0.22 -0.01 0.05 0.21 0.01 0.08
GR -0.24 -0.32 0.13 0.37 -0.08 -0.17
IR -0.11 -0.05 0.00 0.11 0.02 -0.00
IT -0.17 -0.06 0.07 0.19 -0.02 0.02

PB -0.20 -0.02 -0.04 0.18 0.09 0.05
RU -0.15 -0.08 0.09 0.19 -0.05 0.00
AU -0.25 0.26 0.03 0.12 0.06 0.34
FI -0.27 0.33 -0.14 0.07 0.24 0.38

NO -0.17 -0.17 0.04 0.23 -0.01 -0.08
PO -0.20 0.55 0.37 0.03 -0.26 0.64
SP -0.17 -0.07 0.06 0.19 -0.01 0.01
SV -0.20 -0.12 0.07 0.24 -0.03 -0.02
CH -0.23 -0.29 0.15 0.36 -0.10 -0.15
TU -0.26 -0.00 -0.84 0.04 0.88 -0.05
YU -0.26 -0.04 0.13 0.27 -0.06 0.09

Table 2: Component matrix A from the unrotated and rotated solution with relative weights
(3, 3, 3)

F1 F2 F1 F2
INFO -0.26 0.09 0.02 0.28
RADI -0.42 -0.86 0.96 0.03
TELE -0.46 0.26 -0.05 0.53
STRU -0.59 0.40 -0.12 0.70
ELET -0.34 0.07 0.08 0.34

COMP -0.28 -0.14 0.25 0.19

Table 3: Component matrix B from the unrotated and rotated solution with relative weights
(3, 3, 3)
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F1 F2 F1 F2
78 -0.33 -0.75 0.81 0.09
79 -0.36 -0.37 0.46 0.23
80 -0.34 -0.14 0.24 0.28
82 -0.38 0.28 -0.15 0.45
83 -0.40 0.25 -0.11 0.46
84 -0.41 0.28 -0.14 0.48
85 -0.41 0.27 -0.13 0.47

Table 4: Component matrix C from the unrotated and rotated solution with relative weights
(3, 3, 3)

F1 F2 F3 F4
F1 -32.69 0.27 -0.46 -1.70
F2 0.19 12.48 -1.03 -1.45
F3 0.29 -0.72 -0.77 -5.55
X

F1.1 3.07 8.91 6.06 27.18
F2.1 6.74 0.67 3.01 7.40
F3.1 2.88 2.03 15.18 6.81

Table 5: Core array from the unrotated and rotated solution with relative weights (3, 3, 3)

Reflection (or sign reversal). The sign reversal does not change the model (PARAFAC
or Tucker3) as long as it is done consistently (see Smilde et al. 2004, p.200). The flip of the
sign (multiplying by -1) in PARAFAC has to be done simultaneously on two modes (A and
B or A and C or B and C), while in Tucker3 this is more complicated because of the presence
of the core array. The sign reversal will cause a mirroring of the scatter plot (see 5.5). In
rrcov3way reflection is done either by one of the methods reflect() or do3Postprocess().
In the following example the sign of the second component of mode A of a PARAFAC model
will be flipped (and this change will be absorbed by mode B).

R> res <- Parafac(elind)
R> head(res$A)

F1 F2
CA 5.278714 -0.7455495
US 5.405461 -0.7422575
JP 6.633099 0.3431131
AS 6.156730 -1.2995336
NZ 7.683093 -1.7930409
BL 7.568537 -0.1430425

R> head(res$B)

F1 F2
INFO -0.2481020 0.03797682
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RADI -0.7860668 -2.72317282
TELE -0.3548324 0.68392392
STRU -0.4097308 1.18703648
ELET -0.3352797 -0.01079269
COMP -0.3627819 -0.67860306

R> res1 <- do3Postprocess(res, reflectA = c(1, -1))
R> head(res1$A)

F1 F2
CA 5.278714 0.7455495
US 5.405461 0.7422575
JP 6.633099 -0.3431131
AS 6.156730 1.2995336
NZ 7.683093 1.7930409
BL 7.568537 0.1430425

R> head(res1$B)

F1 F2
INFO -0.2481020 -0.03797682
RADI -0.7860668 2.72317282
TELE -0.3548324 -0.68392392
STRU -0.4097308 -1.18703648
ELET -0.3352797 0.01079269
COMP -0.3627819 0.67860306

Reordering the components. Similarly as the sign reversal, reordering of the components
will not change the model if done consistently (for all modes simultaneously in PARAFAC
and for the selected mode and the core array in Tucker3). In rrcov3way reordering is done by
one of the methods reorder() or do3Postprocess(). The parameter order can be either
a vector containing the new order of the components or a logical TRUE. In the latter case
the components will be arranged in decreasing order of the component standardized weights
(explained variability).

5.5. Visual tools for three-way analysis

The results from a three-way analysis can be presented in several different ways (see Kroonen-
berg et al. 2009), the first one being tables of the coefficients or loadings for each mode, either
rotated or not. While it is important to inspect the numerical output of the methods for
analysis of three-way data (the component matrices and the core array) in order to properly
interpret the results, it can be of great help to use different visual representations of these
outcomes. The most typical plots are:

• Distance-distance plot for presenting robust models and identifying outliers,

• Pair-wise graphs of the components for each mode separately,
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• All-components plots which will show all components of a single mode using the levels
of the mode as X-axis,

• Per-component plot, showing a single component on all modes simultaneously in the
same plot.

As we will see further, although all these plots can be applied to both PARAFAC and Tucker3
models, some of them (e.g., the per-component plots) are more suitable for the results of
PARAFAC, while others are more suitable for Tucker3 (e.g., the joint biplots).

One of the features of the package rrcov3way which is not to be found in the other R packages
for three-way analysis, is the availability of a variety of plotting procedures. These proce-
dures are flexible enough to give the user the possibility to design the graphs according to the
needs and the data at hand but at the same time provide suitable default parameters which
facilitate their use. These procedures are mainly based on Kiers (2000b) and Kroonenberg
(2008) and the reader is referred to these publications for more details.

To illustrate the plotting procedures in the package the data set girls (Kroonenberg 2008)
will be used. It is available in the package and we start by loading it.

R> data("girls")
R> dim(girls)

[1] 30 8 12

R> head(girls[, , 1])

weight length crrump head chest arm calf pelvis
1 1456 1025 602 486 520 157 205 170
2 1426 998 572 501 520 150 215 169
3 1335 961 560 494 495 145 214 158
4 1607 1006 595 497 560 178 218 172
5 1684 1012 584 490 553 165 220 158
6 1374 1012 580 492 525 158 202 167

R> sum(girls ^ 2)

[1] 5013808343

The data are from a French auxiological study in the years 1953—1975, (Sempé 1987) with
the goal to get insight into the physical growth patterns of children from ages four to fifteen.
Thirty girls were selected and they were measured yearly between the ages 4 and 15 on the
following eight variables:

• Weight,

• Length,
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• Crown-rump length,

• Head circumference,

• Chest circumference,

• Arm,

• Calf,

• Pelvis.

The data are stored as a three-way array of size 30(girls) × 8(variables) × 12(years). The
data are preprocessed by centering across mode A (the 30 girls), and by normalizing each
of the variables (i.e., across girls and years) such that for each variable the sum of squares
is unity. We do the centering and normalization with the function do3Scale(), setting
only.data=FALSE in order to obtains also the center that was removed, i.e., the profile of the
“average girl”. This average profile will be used to plot in Fig. 5 the average growth curves.
To equalize the range of the variables, several variables were divided by 10 (in the legend of
the plot these variables are marked by an asterisk.

R> X <- do3Scale(girls, center = TRUE, scale = TRUE, only.data = FALSE)
R> center <- X$center
R> X <- X$x
R> average.girl <- as.data.frame(matrix(center, ncol = 8, byrow = TRUE))
R> dimnames(average.girl) <- list(dimnames(X)[[3]], dimnames(X)[[2]])
R> average.girl$weight <- average.girl$weight / 10
R> average.girl$length <- average.girl$length / 10
R> average.girl$crrump <- average.girl$crrump / 10
R> sum(X ^ 2)

[1] 8

R> p <- ncol(average.girl)
R> plot(rownames(average.girl), average.girl[,1],
+ ylim = c(50, 1200),
+ type = "n", xlab = "Age", ylab = "")
R> for(i in 1: p)
+ {
+ lines(rownames(average.girl), average.girl[, i], lty = i, col = i)
+ points(rownames(average.girl), average.girl[, i], pch = i, col = i)
+ }
R> legend <- colnames(average.girl)
R> legend[1] <- paste0(legend[1], "*")
R> legend[2] <- paste0(legend[3], "*")
R> legend[3] <- paste0(legend[4], "*")
R> legend("topleft", legend = legend, col = 1:p, lty = 1:p, pch = 1:p)
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Figure 5: Average growth curves for the girls data set. The variables with an asterisk were
divided by 10 to make the ranges similar

To the preprocessed data will be applied Tucker3 analysis with P = 3, Q = 3 and R = 2
components and PARAFAC analysis with F = 3 components, as it was done in Kroonenberg
(2008).

R> (t3 <- Tucker3(X, 3, 3, 2))

Call:
Tucker3(X = X, P = 3, Q = 3, R = 2)

Tucker3 analysis with 3 x 3 x 2 components.
Fit value: 1.833182
Fit percentage: 77.09 %

R> (cp <- Parafac(X, ncomp = 3))

Call:
Parafac(X = X, ncomp = 3)

PARAFAC analysis with 3 components.
Fit value: 1.808497
Fit percentage: 77.39 %
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Both models obtain a fit of 77.4%. We execute also the robust Tucker3 procedure by setting
the argument robust=TRUE. For the underlying robust principal components for both Tucker3
and PARAFAC, we select the number of components to be ncomp.rpca=3, as suggested by
the unfolded data array. In this case the fit becomes 81% for the robust Tucker and 82% for
the robust PARAFAC models.

R> (t3r <- Tucker3(X, 3, 3, 2, robust = TRUE, ncomp.rpca = 3))

Call:
Tucker3(X = X, P = 3, Q = 3, R = 2, robust = TRUE, ncomp.rpca = 3)

Tucker3 analysis with 3 x 3 x 2 components.
Fit value: 1.497163
Fit percentage: 81.29 %
Robust

R> (cpr <- Parafac(X, ncomp = 3, robust = TRUE, ncomp.rpca = 3))

Call:
Parafac(X = X, ncomp = 3, robust = TRUE, ncomp.rpca = 3)

PARAFAC analysis with 3 components.
Fit value: 1.377797
Fit percentage: 82.78 %
Robust

Distance-Distance plot. In the context of PCA Hubert et al. (2005) defined a diagnostic
plot or outlier map which helps to distinguish between regular observations and different
types of outliers. Similarly as in robust regression (see Rousseeuw and van Zomeren 1990)
each observation is characterized by two distances: the residual distance (RD) defined in
Equation 3 and the score distance (SD). The score distance of an observation Xi is the
robust version of the Mahalanobis distance of the score ai to the center of the score matrix
A:

SDi =
√

(ai − m)⊤S−1(ai − m), (10)

where m and S are taken as the robust minimum covariance determinant (MCD) estimates of
the center and covariance matrix of the scores respectively. The diagnostic plot is constructed
by plotting the score distances on the horizontal axis, the residual distances on the vertical
axis and drawing two cutoff lines which will help to classify the observations. The cutoff
value on the horizontal axis (for the score distances) is taken as the 97.5% quantile of χ2

F

distribution with F degrees of freedom, i.e., chorizontal =
√

χ2
0.975,F , assuming that the scores

are approximately normally distributed which gives χ2-distributed squared score distances.
For the cutoff value on the vertical axis (for the residual distances) the Wilson-Hilferty trans-
formation for a χ2 distribution is used (which assumes that the RDi to the power of 2/3 are
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approximately normally distributed). The parameters µ and σ of the normal distribution can
be robustly estimated by the univariate MCD of the values RD2/3

i as m and s, and the critical
value can be taken as cvertical = (m + sz0.975)3/2 where z0.975 is the the 97.5% quantile of the
standard normal distribution. Using these cutoff values the observations can be classified into
regular observations (small RDi and small SDi), residual outliers (large RDi and small SDi),
bad leverage points (large RDi and large SDi) and good leverage points (small RDi and large
SDi).

Similarly, a classical diagnostic plot can be generated by computing the distances as well
as their cutoff values using the classical estimates instead of the robust ones. This will allow
to compare visually the classical and robust PARAFAC and Tucker3 methods. Both the
robust and the classical plot can be used for visualizing compositional data.

The distance-distance plot is the default plot for both Tucker3 and PARAFAC objects. There-
fore we can call the plot function, simply passing the corresponding object as a parameter.
The most extreme outliers are identified by their labels. It is possible to specify the number
of outliers to be identified as well as the labels which are to be used. In Fig. 6 are shown
the classical (left) and the robust (right) distance-distance plots for PARAFAC model with
ncomp=3 of the girls data. In the classical plot no bad leverage points are identified, only the
girl with label 27 is identified as a residual outlier and girl 3 is possibly a border case. Girl
30 is shown as a good leverage point. The robust plot confirms the outlying position of the
girls 27 and 3, also shows girl 26 as a border case, but also identifies girl 30 as a bed leverage
point. Two other girls are flagged as good leverage points (14 and 18).
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Figure 6: Classical and robust distance-distance plot for a three component PARAFAC model
of the girls data set.

Paired components plots (or single mode plots) are plots in which pairs of components in
a single mode are plotted against each other in a two dimensional scatter plots. Kroonenberg
(2008) differentiates between normalized and principal coordinates, the former being the
coordinates returned by the estimation procedure and the latter are scaled by the square root
of the explained variance and argues that the principal coordinates are preferred since they
make the differences in explained variances less dramatic. Kiers (2000b) proposes a generic
procedure, equivalent to the principal coordinates, which we follow here. To generate this
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plot we use the argument which="comp" in the generic plot function. The default mode is A
(can be changed by setting the argument mode, e.g., mode="B" or mode="C") and the default
components to plot are the first two but any combination of components can be chosen by
the argument choices, e.g., choices=c(2,3). In case of mode="B" the “variables” will be
plotted as arrows, with initial point in the origin. If this is not desired, the arrows can be
suppressed by arrows=FALSE. The paired components plots for mode A are shown in Fig. 7
and those for mode B (with arrows) in Fig. 8.

R> oldpar <- par(mfrow = c(1, 2))
R> plot(t3, which = "comp", choices = 1L:2L)
R> plot(t3, which = "comp", choices = c(1L, 3L))
R> par(oldpar)
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Figure 7: Side-by-side paired components plots of mode A of the girls growth curves data.

R> oldpar <- par(mfrow = c(1, 2))
R> plot(t3, which = "comp", choices = 1L:2L, mode = "B")
R> plot(t3, which = "comp", choices = c(1L,3L), mode = "B")
R> par(oldpar)
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Figure 8: Side-by-side paired components plots of mode B of the girls growth curves data.
The variables are presented as arrows.
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These displays are available for both Tucker3 and PARAFAC models, and work in exactly the
same way—this follows from the fact that it is sufficient to replace the core array in Tucker3
by the identity in PARAFAC. However, it is necessary to note that in the case of a PARAFAC
model the components are orthonormalized in accordance with the Kiers’ procedure (Kiers
2000b).

If the data are compositional, the orthonormalization will not affect the results.

Per-component plot. This plot presents a single component across all modes. In some
cases one is not interested in the relation between the different subjects which can be presented
in one mode but rather in the relation of the components in the different modes. The per-
component plot is constructed by plotting the coefficients for all modes along a single line.
Although this plot could be used also for Tucker3, it is most suitable for PARAFAC. To
facilitate the presentation of the different modes on a single plot the components should be
either orthonormalized or scaled to unit mean square. The per-component plot for the girls
growth curve data is shown in Fig. 9.

R> cp <- Parafac(X, ncomp = 2)
R> cp <- do3Postprocess(cp, reflectA = -1, reflectC = -1)
R> plot(cp, which = "percomp")
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Figure 9: Per-component plot for the girls growth curves data from a PARAFAC analysis
with 2 components.

It is important to note that the variable means were removed for each time point which
means that the girl with zero component on the girls mode is the average girl and has average
growth curves. All variables and all years have positive coefficients. The differences in variable
’Length’ are more dramatic than the differences in ’Arm circumference’. The time points
present something like trajectory up to the 13th year the differences grow and after that fall
down again.

All components plots. These plots are also single mode plots and are useful in case when
one of the modes has a natural ordering—points in time or wavelengths of emission/excitation
spectra (the latter is almost a standard plot in chemometrics). The two components from
the age mode (mode C) of the Tucker3 model of the girls growth curves data are presented
in Fig. 10.

R> plot(t3, which="allcomp")
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Figure 10: All components plot for the girls growth curves data with the age on the horizontal
axis (mode C) and the component scores on the vertical axis.

The second example is from chemometrics and returns an all component plot of a PARAFAC
model with three components of a fluorescence spectroscopy experiment (Fig. 11). The data
set is amino containing 5 samples (mode A) of emission-excitation data. In the plot is pre-
sented the excitation mode (C) on 61 wavelengths from 240 to 300. More about this data set
can be found in Section 6.3.

R> data("amino")
R> amino.cp <- Parafac(amino, ncomp = 3, const = "nonneg")
R> plot(amino.cp, which = "allcomp",
+ xlab = "Wavelength", ylab = "Intensity", mode = "C",
+ points = FALSE, legend.position = NULL)
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Figure 11: All components plot for the Anderson data—plot of PARAFAC components of
the excitation mode (mode C).

Joint biplots In (two-way) multivariate analysis the biplot introduced by Gabriel (1971) in
the context of principal component analysis, represents both the observations and variables in
the plane of (the first) two principal components allowing the visualization of the magnitude
and sign of each variable’s contribution to these principal components. Each observation (row
of scores) is represented as a point in the biplot and each variable is represented as an ar-
row. The arrows graphically indicate the proportion of the original variance explained by the
(first) two principal components and their direction indicates the relative loadings on these
components. The biplot is constructed by SVD decomposition of a data matrix Y = UΛV ⊤

where U and V are the orthonormal matrices of the left and right singular vectors and Λ
is a diagonal matrix of the ordered singular values (i.e., the square roots of the eigenvalues).
From this decomposition two matrices A and B are obtained, which contain coordinates for
plotting the subjects and the variables on the same display.

In three-way analysis we have three modes and it is necessary to choose two of them as
display modes and use the third one as a reference mode. For each slice of the core array (for
each component of the reference mode) can be constructed a joint biplot. The joint biplot
axis are given by

Ãr = (I/J)0.25AU rΛα
r (11)

and
B̃r = (J/I)0.25BV rΛ1−α

r (12)

where U rΛV ⊤
r is the singular value decomposition of the r-th slice Gr of the core array G.

For all the details of the construction of the joint biplot of Tucker3 model see Kroonenberg
(2008), p.273 and the references thereafter.

Let us now consider an example joint biplot using the Tucker3 model of the girls’ growth
curves data. As a reference mode we choose the time mode (see the components of the
time mode depicted in the all-components plot in Fig. 10). In the first component we can
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observe steady increase up to the thirteenth year and then a decline in the last two years.
The straightforward interpretation of the first component would be the overall variability,
meaning that the differentiation between the girls increases up to the thirteenth year and
after that the difference decreases in the last two years. The joint biplot of the girls and
variables modes taking the age mode as a reference one is constructed by the plot command
using the argument which="jbplot". By default the third mode is selected as a reference
mode and again by default the slicing of the core array is done by the first component. The
resulting plot is shown in Fig. 12. The first component of the age mode is presented. The first
striking feature in the plot is that the variables fall into two main groups: length variables
and circumference (soft tissue) variables.

R> t3x <- do3Postprocess(t3, reflectC = -1)
R> plot(t3x, which = "jbplot")
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Figure 12: Joint biplot for the girls growth curves data from a Tucker3 analysis with 3×3×2
components for the first age component.

Trajectory plot In some cases one of the modes has the meaning of a sequence this can
be time (like the age in the girls data example) or some kind of repeated measures. Then, we
would be interested in what happens to the combination of the other two modes with time,
i.e., if we have measurements of objects on a set of variables, we would be interested in how
the objects move in the subspace spanned by the variables with the time. The result will be
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trajectories followed by the objects in the space of the variables. Since the full dimensional
space cannot be used for displaying the trajectories, we can make use of the projections on
the subspaces produced by the applied Tucker3 model. How the trajectories can be computed
is described in detail in Kiers (2000b).

Let us now illustrate the procedure on the girls data set using the visualization functions
provided by the rrcov3way. As usually, we call the function plot() on the object returned
by the Tucker3 function. To display the trajectory plot we specify which="tjplot". If the
centering of the variables was done by subject-occasion combination, the origin of the plot
represents the average profile of the subjects (with the average values on each variable) for
all occasions (see Kroonenberg 2008). Then the patterns presented by the trajectories will
describe the deviations from this average profile. We see that most of the girls start nearer
to the origin and with each year diverge from it. However, later, in the last several observed
years, the trajectories turn back. The arrows shown on the plot represent the variables. Since
all variables point to the right, it means that girls on the right side of the plot increase their
values with respect to the origin (like girls 21 and 19) and girls on the left side of the plot lag
behind (like girls 9 and 11).

R> t3x <- do3Postprocess(t3, reflectB = -1)
R> plot(t3x, which = "tjplot", arrows = TRUE)
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Figure 13: Trajectory plot for the girls growth curves data from a Tucker3 analysis with
3 × 3 × 2 components. The trajectories represent the development of the subjects (girls) over
time with respect to the variables.

We have only 30 objects (girls) in 12 time points and can display them all on the plot.
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However, in case of more objects and/or more time points, the trajectories can be displayed
selectively using the parameter choices. To illustrate this option, in Fig. 14 are displayed
the trajectories of girls 9, 11, 25 and 18. Also the display of the variables is suppressed by
setting arrows=FALSE.

R> plot(t3x, which = "tjplot", choices = c(9, 11, 25, 2), arrows = FALSE)
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Figure 14: Trajectory plot for several objects in the girls growth curves data from a Tucker3
analysis with 3 × 3 × 2 components.

6. Examples with data sets

6.1. Kojima data set: Judging Parents’ Behaviour

These data are drawn from a study (Kojima 1975) of the perception of parental behaviour
by parents and their children and consist of two separate data sets: boys and girls. The
data present ratings expressing the judgements of parents with regard to their own behaviour
towards their children and judgements of the children with respect to their parents. This
results in four conditions which in the case of the girls data set are

• Father-Own behavior (F-F),

• Mother-Own behavior (M-M),

• Daughter-Father (D-F) and
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• Daughter-Mother (D-M).

The judgements we made by 150 middle-class Japanese eighth-grade boys (153 girls) on 18
subscales and the corresponding three-way data sets are 150 (boys) times 18 (scales) times
4 (conditions) and 153 (girls) times 18 (scales) times 4 (conditions) respectively.

The boys data were analyzed in Kroonenberg (2008) and the girls data were analyzed in
Kroonenberg et al. (2009). Here we will build a PARAFAC model for the Kojima girls data
set.

R> data("Kojima")
R> dim(Kojima.girls)

[1] 153 18 4

R> head(dimnames(Kojima.girls)[[1]])

[1] "G1" "G2" "G3" "G4" "G5" "G6"

R> dimnames(Kojima.girls)[[2]]

[1] "Accept" "ChCent" "Positv" "Reject" "Contrl" "Enforc" "PosInv"
[8] "Intrus" "CtrGlt" "HostCn" "InDisc" "NonEnf" "AccInd" "LaxDis"

[15] "PerAnx" "HostDt" "WiRela" "XAuton"

R> dimnames(Kojima.girls)[[3]]

[1] "G.F" "F.F" "G.M" "M.M"

A standard way of preprocessing three-way profile data is to center across individuals (per
column in Mode A) and to normalize within variables (per row in mode B).

R> X <- do3Scale(Kojima.girls, center = TRUE, scale = sd)

Now we perform classical PARAFAC analysis on the centered and normalized girls data using
the function Parafac() with the default settings and selecting 3 components as it was done
in Kroonenberg et al. (2009).

R> cp <- Parafac(X, ncomp = 3, const = c("orth", "none", "none"), conv = 1e-10)
R> cp

Call:
Parafac(X = X, ncomp = 3, const = c("orth", "none", "none"),

conv = 1e-10)

PARAFAC analysis with 3 components.
Fit value: 6782.944
Fit percentage: 38.33 %
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The fitted sum of squares explained by the model is 39%. According to Kroonenberg (2008)
it is possible to apply orthogonality constraints on the first mode (individuals) to improve
the solution,however, this improvement is negligible. Furthermore, it is necessary that at
least one of the component matrices has orthogonal columns in order to be able to compute
the explained variance by component. The orthogonal constraint to mode A is set by the
parameter const=c("orth", "none", "none") - this will set the constraints on modes B
and C to "none".

As usual in the analysis of profile data the interpretation starts with the variables (i.e.,
mode B, the scales in our example) and we want to display these as principal coordinates (see
Kroonenberg 2008, 9.4, page 219). We reflect the solution (change the sign) and rearrange
the components as in Table 1 in Kroonenberg et al. (2009). To renormalize the solution we
use the generic function do3Scale()—for a PARAFAC solution this function will normalize
two of the modes to unit sum of squares and will compensate in the third one. Since we want
first to look at the variables and conditions, we choose to compensate the normalization in
mode A. Since the purpose of this example is just to illustrate the application of the package
rrcov3way for profile data analysis, we will not go further into detail, the interested reader is
referred to Kroonenberg et al. (2009).

R> cp.norm <- do3Scale(cp, mode = "A")
R> cp.norm <- do3Postprocess(cp.norm, reflectB = c(-1, -1, -1))
R> cp.norm <- do3Postprocess(cp.norm, reorder = c(2, 3, 1))
R> b.pc <- coordinates(cp.norm, mode = "B", type = "principal")

Next we display the results: mode A, the variables, in principal coordinates, the standard-
ized weights (the explained variance per-component) and the third mode, the conditions, in
normalized coordinates.

R> round(b.pc, 2)

F2 F3 F1
Accept 0.64 0.24 0.27
ChCent 0.54 0.27 0.32
Positv 0.06 0.38 0.47
Reject -0.53 0.24 0.32
Contrl 0.02 0.56 0.32
Enforc -0.18 0.49 0.34
PosInv 0.54 0.30 0.40
Intrus 0.16 0.49 0.37
CtrGlt -0.34 0.35 0.36
HostCn -0.16 0.61 0.34
InDisc -0.30 0.14 0.43
NonEnf 0.01 -0.22 0.28
AccInd 0.64 0.17 0.29
LaxDis 0.04 0.00 0.37
PerAnx -0.11 0.49 0.41
HostDt -0.58 0.16 0.24
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WiRela -0.44 0.23 0.35
XAuton 0.02 -0.20 0.32

R> round(weights(cp.norm), 2)

F2 F3 F1
0.14 0.12 0.12

R> round(coordinates(cp.norm, mode = "C"), 2)

F2 F3 F1
G.F 0.56 0.70 0.23
F.F 0.38 0.22 0.63
G.M 0.59 0.67 0.22
M.M 0.44 0.12 0.71

The most revealing plot for this analysis is the pre-component plot representing the first
component across all modes, which is shown in Fig. 15.



Valentin Todorov, Violetta Simonacci, Maria Anna Di Palma, Michele Gallo 41

R> plot(cp.norm, which = "percomp")
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Figure 15: Per-component plot for the Kojima girls profile analysis from a PARAFAC analysis
with 3 components.

Using the Tucker congruence coefficient, see 7, which is the accepted way for comparing
components, we can investigate the relation between PARAFAC models with different number
of components (see Kroonenberg et al. 2009, Table 2).

R> cp1 <- Parafac(X, ncomp = 1, const = c("orth", "none", "none"),
+ maxit = 10000, conv = 1e-10)
R> cp2 <- Parafac(X, ncomp = 2, const = c("orth", "none", "none"),
+ maxit = 10000, conv = 1e-10)
R> cp2 <- do3Postprocess(cp2, reorder = TRUE)
R> cp3 <- Parafac(X, ncomp = 3, const = c("orth", "none", "none"),
+ maxit = 10000, conv = 1e-10)
R> cp3 <- do3Postprocess(cp3, reorder = TRUE)
R> round(congruence(cp1$A, cp1$A), 2)

F1
F1 1
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R> round(congruence(cp2$A, cp1$A), 2)

F1
F2 0.78
F1 0.62

R> round(congruence(cp3$A, cp1$A), 2)

F1
F2 -0.18
F1 0.70
F3 0.69

R> round(congruence(cp1$A, cp2$A), 2)

F2 F1
F1 0.78 0.62

R> round(congruence(cp2$A, cp2$A), 2)

F2 F1
F2 1 0
F1 0 1

R> round(congruence(cp3$A, cp2$A), 2)

F2 F1
F2 0.47 -0.88
F1 0.60 0.34
F3 0.64 0.33

R> round(congruence(cp1$A, cp3$A), 2)

F2 F1 F3
F1 -0.18 0.7 0.69

R> round(congruence(cp2$A, cp3$A), 2)

F2 F1 F3
F2 0.47 0.60 0.64
F1 -0.88 0.34 0.33

R> round(congruence(cp3$A, cp3$A), 2)

F2 F1 F3
F2 1 0 0
F1 0 1 0
F3 0 0 1
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Most of the congruence coefficients are far from one which means that the orthogonal subject
spaces of the Kojima girls data are nearly unrelated.

6.2. Analyzing water quality data
The data set Arno contains data from the study of several physico-chemical processes, natural
or attributable to anthropogenic phenomena present along the Arno river (central-northern
Apennines, Italy). The impact of those variables was modeled by Gallo and Buccianti (2013)
through a weighted principal component analysis with the aim to assess the impact of water
pollution on the environmental and ecological characteristics of the river across time and
space. The data in the three-way array was obtained by sampling carried out between May
2002 and October 2003, at 23 locations along the river, at different distances from the the
springs. The main chemical composition of water measured by 11 compositional parts (HCO3,
Cl, SO4, NH4, NO2, NO3, Na, K, Ca, Mg, SiO2) was recorded for 92 compositions (23
locations at four occasions). The 23 compositions, associate to different spatial coordinates,
indicating distance from the spring, were arranged by rows, the 11 parts by columns and the 4
occasions by tubes, thus resulting in a 23 × 11 × 4 array. All the details on the data collection
can be found in Gallo and Buccianti (2013). One of the front slices (the first occasion) is
presented below in the original measure:
R> data("Arno")
R> Arno[, , 1]

HCO3.co3 Cl SO4 NH4 NO2 NO3 Na K Ca Mg SiO2
LaCasina 97.20 7.8 10.1 0.052 0.013 0.74 5.9 0.9 30 3.8 4.10
Pratovecchio 148.78 9.9 15.8 0.077 0.026 1.24 7.3 1.3 44 6.0 3.00
P_Poppi 118.32 7.4 13.0 0.168 0.026 1.18 6.0 0.9 34 4.9 4.25
Rassina 166.08 7.8 18.2 0.052 0.023 0.74 7.6 1.3 50 6.6 2.90
Subbiano 190.17 10.3 23.5 0.090 0.046 1.67 10.1 1.6 55 8.3 1.20
B_Riposo 176.90 11.3 25.0 0.039 0.043 1.67 11.3 1.7 48 8.5 2.50
P_Buriano 182.56 13.1 26.4 0.142 0.082 2.67 12.6 1.9 54 8.5 2.20
P_Romito 187.88 20.6 26.9 0.361 0.210 3.47 22.1 3.3 52 10.3 1.80
S_Valdarno 207.40 27.3 30.2 0.103 0.187 6.01 27.1 4.3 61 11.0 2.10
Incisa 187.63 41.8 37.4 0.116 0.075 3.47 38.5 4.3 54 12.5 0.90
Rosano 198.86 38.3 39.8 0.077 0.062 3.53 36.5 4.0 56 13.3 3.40
SanNiccol 172.02 43.6 39.8 0.710 0.020 0.25 37.9 4.4 44 13.3 0.30
P_Signa 199.34 64.9 47.5 1.496 0.292 1.92 58.2 7.8 55 15.4 1.20
Camaioni 270.23 122.7 100.3 5.031 0.685 0.31 107.8 9.4 70 14.8 3.50
Montelupo 280.60 150.0 100.8 4.386 1.968 0.12 146.0 10.0 74 14.5 7.20
Empoli 200.05 98.6 85.0 0.219 0.696 6.01 89.5 6.8 59 12.0 3.50
C_Alberti 149.54 105.6 97.9 0.194 0.685 6.01 95.0 6.6 51 12.0 3.00
Castelfranco 262.30 190.0 137.3 0.735 1.968 7.50 162.5 9.0 84 18.5 9.30
Calcinaia 228.75 245.0 150.2 0.529 0.919 10.23 194.5 9.5 79 17.5 9.90
S.GiovanniAllaVena 187.88 47.5 45.1 0.142 4.920 8.99 41.5 4.7 57 11.0 5.50
Caprona 181.78 44.7 39.8 0.245 4.264 8.00 38.9 4.5 56 10.8 5.60
PisaP 179.34 1080.2 175.2 0.155 1.312 9.98 602.5 2.8 73 81.3 5.40
Arno 175.68 4374.9 575.0 0.284 0.656 20.03 2335.0 91.5 135 286.3 4.00

The original data are expressed in mg/L, (equivalent to ppm if data are multiplied for the
density of the water (g/cm3)). The intrinsic characteristic of this data set suggests using
compositional data analysis.

To perform compositional Tucker3 analysis we call the function Tucker3() using the pa-
rameter coda.transform="ilr". At the same time the preprocessing is invoked by setting
center=TRUE and center.mode="AB". Thus the data were first ilr-transformed (losing one
dimension in the second mode) and then centered across the first and second mode so that
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the average of each row and each column was zero. Gallo and Buccianti (2013) suggest the
number of components for the three modes to be chosen as (2 × 2 × 1) which results in a fit
of 60.02%.

R> (Arnot3 <- Tucker3(Arno, P = 2, Q = 2, R = 1,
+ center = TRUE, center.mode = "AB", coda.transform = "ilr"))

Call:
Tucker3(X = Arno, P = 2, Q = 2, R = 1, center = TRUE, center.mode = "AB",

coda.transform = "ilr")

Tucker3 analysis with 2 x 2 x 1 components.
Fit value: 180.9783
Fit percentage: 60.65 %
ilr-transformed

Of great help for the proper interpretation of the results can be the different visual represen-
tations of these outcomes. First of all let us look at the pair-wise graphs of the components
for the first two modes separately, shown in Fig. 16. It should be reminded that the analysis
is carried out on ilr coordinates while the different plots display the clr coordinates allowing
a better interpretability of the individuals (locations) and variables (compositional parts).
In Fig. 16.b the length of the arrows give information about the standard deviation of the
corresponding centered logratio. It is more important to look at the the distance between the
tips of the arrows, known as links which estimates the standard deviation of the ratios be-
tween chemical elements. The correlation between the parts (variables) is displayed in terms
of angle between the arrows.

R> plot(Arnot3, which = "comp", main = "(a) Paired component plot (mode A)")

R> plot(Arnot3, which = "comp", mode = "B",
+ main = "(b) Paired component plot (mode B)")
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Figure 16: Pair-wise component plot for the Tucker3 decomposition of the Arno data. The
left-hand panel (a) corresponds to mode A and the right-hand one, (b) —to mode B.
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To investigate the relationship between the elements of different modes, the decomposition
can be presented in a joint biplot which shows both compositions and parts (assuming that
the third mode, the time, is chosen as a reference mode) in the same plot, see Fig. 17.

R> plot(Arnot3, which = "jbplot", main = "Joint biplot")
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Figure 17: Joint component plot for the Tucker3 decomposition of the Arno data.

The most important variation is shown by Cl and Na followed by NO2 and NH4. For Cl a high
variation has to be attributable to different phenomena such as the presence of evaporation,
pollution or, to the contribution of sea water intrusion perturbing the samples near the mouth
of the river, all contributions that suffer the effect of seasonality. Na shows the same pattern.
High variability of NO2 and NH4 is attributable to anthropogenic sources changing in time
and space and to the chemical reactions that transformed the reduced forms into the more
stable species, NO3, in oxidized environment.
Considering the links between components which represent the ratio between chemical parts,
we see that the ratio Na+/Cl- displayed as a very small segment joining these chemical part
shows that the value is almost constant, preserving the environmental conditions affecting
the behavior of the variables. A similar conclusion is demonstrated for SO4

2- and K+ and
for SiO2 and Ca2+. Projecting the composition "La Casina" on the ratio Mg2+/NH+

4 reveals
for the same variables a possible perturbation due to different sources (increase of Mg2+ or
decrease of NH+

4, caused by seasonality).
Considering the compositions, we notice that “LaCasina”, “Rosano”, “PisaP” and “Arno”
are located in the opposite side with respect to “Camaioni” and “Montelupo” which can be
explained by the fact that the latter are mainly characterized by an important contribution
of NH4

+ along the river’s path, indicating that these sites suffered higher pollution during
the sampling period than most of the others.
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If we look at the third mode as a time variable, and draw the trajectory plot as shown in
Fig. 18, it is possible to analyze the effect of seasonality and to point out different behavior
for the different spatial positions.

R> plot(Arnot3, which = "tjplot", main = "Trajectory biplot")
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Figure 18: Trajectory plot for the Tucker3 decomposition of the Arno data.

It is clear that most of the samples were located on a linear pattern which in part corresponded
to the distance from the source or the distance from different sub-basins that occurred along
the river’s path. Some differences are demonstrated for two sites whose results are mostly
influenced by the closeness to the mouth (influence of sea water intrusion) which modified
the chemical composition.

6.3. Decomposition of fluorescence data

The purpose of this example is to demonstrate the use of nonnegativity constraints in PARAFAC.
The data set (Bro 1997) is available in MATLAB format at http://www.models.life.ku.
dk/Amino_Acid_fluo. It consists of five simple laboratory-made samples where each sample
contains different amounts of tyrosine, tryptophan and phenylalanine dissolved in phosphate
buffered water. The samples were measured by fluorescence (excitation 240-300 nm, emission
250-450 nm, 1 nm intervals) on a PE LS50B spectrofluorometer. The array to be decomposed
is thus 5 × 201 × 61. First we plot the emission and excitation measurements of one sample.
The result is shown in Fig 19.

R> data("amino")
R> x <- as.numeric(dimnames(amino)[[2]])
R> y <- as.numeric(dimnames(amino)[[3]])
R> persp(x, y, amino[2, , ], ticktype = "detailed",

http://www.models.life.ku.dk/Amino_Acid_fluo
http://www.models.life.ku.dk/Amino_Acid_fluo
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+ theta = -15, phi = 30, col = "lightblue",
+ xlab = "Emission wavelength", ylab = "Excitation wavelength",
+ zlab = "Intensity")
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Figure 19: Fluorescence landscape of one sample.

In the next figure Fig. 20 are shown two excitation spectra. These data have been investigated
several times and always using PARAFAC with three components. We expect that ideally
the data should be describable with three PARAFAC components because each individual
amino acid gives a rank-one contribution to the data.

R> library("ggplot2")
R> library("reshape2")
R> mamino1= melt(amino[, 1 ,], value.name = "Intensity")
R> mamino2= melt(amino[, 30 ,], value.name = "Intensity")
R> mamino <- rbind(cbind(id = dimnames(amino)[[2]][1], mamino1),
+ cbind(id = dimnames(amino)[[2]][30], mamino2))
R> colnames(mamino)[2] <- "Sample"
R> colnames(mamino)[3] <- "Emission Wavelength"
R> p <- ggplot(data=mamino, aes(x = `Emission Wavelength`, y = Intensity)) +
+ geom_line(aes(colour = Sample)) +
+ facet_wrap(~id, nrow = 2, scales = "free") +
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+ theme_bw()
R> p
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Figure 20: Plot of two excitation spectra.

Therefore we run the default PARAFAC (no constraints) with three components and then
the same, but with nonnegativity constraints, setting the parameter const="nonneg". The
results of the two versions are plotted as all components plot using the plot function with
parameter which="allcomp" and are shown in Fig 21.

R> set.seed(1234)
R> (p1 <- Parafac(amino, 3, const = "nonneg", start = "random"))

Call:
Parafac(X = amino, ncomp = 3, const = "nonneg", start = "random")

PARAFAC analysis with 3 components.
Fit value: 1455821
Fit percentage: 99.94 %

R> (p2 <- Parafac(amino, 3, const = "none", start = "random"))
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Call:
Parafac(X = amino, ncomp = 3, const = "none", start = "random")

PARAFAC analysis with 3 components.
Fit value: 1445118
Fit percentage: 99.94 %

R> plot(p1, which = "allcomp", mode = "B", points = FALSE,
+ legend.position = NULL, xlab = "Wavelength",
+ main = "(b)")

R> plot(p2, which = "allcomp", mode = "B", points = FALSE,
+ legend.position = NULL, xlab = "Wavelength",
+ main = "(a)")
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Figure 21: Emission spectra decomposition: (a) Unconstrained PARAFAC with three com-
ponents and (b) Nonnegative PARAFAC with three components.

7. Summary and Conclusions
Multi-way analysis received a growing attention in chemistry, chemometrics, economics and
other disciplines in the recent decades, with the most prominent three-way models being
Tucker3 and PARAFAC. This gave raise to a number of software tools implementing these
models and different variations of them. While most of these tools are developed for MAT-
LAB, recently a number of R packages appeared too. With the development of our R package
we address two important issues in three-way analysis which were not covered so far by R or
other software, namely: (i) the robustness of the estimation procedures to outliers in the data
and (ii) handling of compositional data. Thus, the main purpose of this work is to illustrate
the unique tools introduced in the R package rrcov3way for modeling three-way data and
three-way compositions with or without outliers. This is achieved by demonstrating through
real data examples the relevance and correct use of the standard, robust, compositional and
compositional-robust procedures included in the package and of other functions provided
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for the proper treatment and representation of results. In addition the package also includes
a useful set of plotting tools which allow for quick and correct visualization of the main results.

We plan to expand the models implemented in rrcov3way and presented in this paper to
supervised methods like three-way partial least squares and discriminant analysis. Addition
of more diagnostic and model selection tools will contribute to the usefulness of the package.
Also, interactive visualization features seem to offer a promising path for visual diagnostics,
which is another subject for future work.
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Hadamard product

The Hadamard product (or elementwise product) is defined as follows

A ◦ C = (aijcij)ij ,

where the scalar aijcij is the ij-th element of the resulting matrix A ◦ C, which is of order
m × n.

Kronecker product

A ⊗ B = (aijB)ij ,

where the resulting matrix A ⊗ B is of order mp × nq and aijB is the ij-th submatrix of
order p × q.

Khatri-Rao product

The Khatri-Rao product of two matrices A and B, of dimensions I×K and J ×K respectively
is defined as

A ⊙ B = (Aij ⊗ Bij)ij ,

The result is an IJ × K matrix formed by the matching column-wise Kronecker products. In
rrcov3way the Khatri-Rao product is computed by the function krp(A, B).

Tucker congruence coefficient

The congruence coefficient is an index of the similarity between factors which is similar to
a correlation coefficient except that the components are not in deviation of their means. It
is known as “Tucker’s coefficient” (Tucker 1951), however it was first introduced by Burt
(1948). The congruence coefficient ϕ between two components x and y is given by the
following formula:

ϕxy =
∑

xy√∑
x2∑y2 .

In rrcov3way the Tucker’s congruence coefficient can be computed by the function congruence(x,y).
The input can be either two vectors, one matrix (by default y=NULL) or two matrices. If one
matrix X is passed to the function, the congruence coefficients between its columns will be
computed. The result is a symmetric matrix with ones on the diagonal. If two matrices
are provided, they must have the same size and the result is a square matrix containing the
congruence coefficients between all pairs of columns of the two matrices.
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